Quantum Causal Graph Dynamics
Pablo Arrighi  2, 1@  , Simon Martiel  3@  
2 : Institut Rhône-Alpin des systèmes complexes  (IXXI)  -  Site web
École Normale Supérieure - Lyon, Université Joseph Fourier - Grenoble 1, Université Claude Bernard Lyon 1, Institut National des Sciences Appliquées Lyon, Institut National de Recherche en Informatique et en Automatique, Université de Lyon, Centre National de la Recherche Scientifique
5, Rue du Vercors 69007 Lyon -  France
1 : Laboratoire dínformatique Fondamentale de Marseille  (LIF)  -  Site web
Aix Marseille Université : UMR7279, Ecole Centrale de Marseille : UMR7279, Centre National de la Recherche Scientifique : UMR7279
Parc Scientifique et Technologique de Luminy 163, avenue de Luminy F-13288 Marseille Cedex 9 -  France
3 : ATOS Quantum
Bull atos technologies

diaporama

Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs---in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on Quantum Cellular Automata with another on Reversible Causal Graph Dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties. Keywords: Quantum Lattice Gas Automata, Block-representation, Curtis-Hedlund-Lyndon, No-signalling, Localizability, Quantum Gravity, Quantum Graphity, Causal Dynamical Triangulations, Spin Networks, Dynamical networks, Graph Rewriting.


Personnes connectées : 1