Mots sturmiens images par morphismes de points fixes de morphismes

Patrice Séébold

Université Paul Valéry - Montpellier 3 LIRMM CNRS UMR 5506

3 juillet 2017

Journées SDA2 2017 - Marseille

- 2 Sturmian morphisms
- 3 Morphisms giving Sturmian images
- Words whose image is Sturmian
- 5 Sturmian images by morphisms of fixed points of morphisms
- 6 A characterization
- Standard morphisms
- 8 Conjugates of standard morphisms

• Infinite words over $\mathcal{A} = \{a, b\}$;

• Non ultimately periodic ($\neq uv^{\omega}$, $u \in A^*$, $v \in A^+$);

• $|u| = |v| \Rightarrow ||u|_a - |v|_a| \le 1 \ (\Rightarrow ||u|_b - |v|_b| \le 1).$ \Rightarrow a Sturmian word cannot contain both a^2 and b^2 .

Lothaire, Proposition 2.1.3

If an infinite word x over A is not Sturmian then it contains the two factors *awa* and *bwb* for some w.

- Infinite words over $\mathcal{A} = \{a, b\}$;
- Non ultimately periodic ($\neq uv^{\omega}$, $u \in \mathcal{A}^*$, $v \in \mathcal{A}^+$);
- $|u| = |v| \Rightarrow ||u|_a |v|_a| \le 1 \ (\Rightarrow ||u|_b |v|_b| \le 1).$ \Rightarrow a Sturmian word cannot contain both a^2 and b^2 .

Lothaire, Proposition 2.1.3

If an infinite word x over A is not Sturmian then it contains the two factors *awa* and *bwb* for some *w*.

- Infinite words over $\mathcal{A} = \{a, b\}$;
- Non ultimately periodic ($\neq uv^{\omega}$, $u \in \mathcal{A}^*$, $v \in \mathcal{A}^+$);
- $|u| = |v| \Rightarrow ||u|_a |v|_a| \le 1 \ (\Rightarrow ||u|_b |v|_b| \le 1).$ \Rightarrow a Sturmian word cannot contain both a^2 and b^2 .

Lothaire, Proposition 2.1.3

If an infinite word x over A is not Sturmian then it contains the two factors *awa* and *bwb* for some *w*.

- Infinite words over $\mathcal{A} = \{a, b\}$;
- Non ultimately periodic ($\neq uv^{\omega}$, $u \in \mathcal{A}^*$, $v \in \mathcal{A}^+$);
- $|u| = |v| \Rightarrow ||u|_a |v|_a| \le 1 \ (\Rightarrow ||u|_b |v|_b| \le 1).$ \Rightarrow a Sturmian word cannot contain both a^2 and b^2 .

Lothaire, Proposition 2.1.3

If an infinite word x over A is not Sturmian then it contains the two factors *awa* and *bwb* for some *w*.

- Infinite words over $\mathcal{A} = \{a, b\}$;
- Non ultimately periodic ($\neq uv^{\omega}$, $u \in \mathcal{A}^*$, $v \in \mathcal{A}^+$);

•
$$|u| = |v| \Rightarrow ||u|_a - |v|_a| \le 1 \ (\Rightarrow ||u|_b - |v|_b| \le 1).$$

 \Rightarrow a Sturmian word cannot contain both a^2 and b^2 .

Lothaire, Proposition 2.1.3

If an infinite word x over A is not Sturmian then it contains the two factors *awa* and *bwb* for some w.

- A morphism *f* on *A* is *Sturmian* if *f*(*x*) is Sturmian whenever *x* is a Sturmian word.
- $St = \{E, \varphi, \tilde{\varphi}\}^*$ $E: a \mapsto b \qquad \varphi: a \mapsto ab \qquad \tilde{\varphi}: a \mapsto ba$ $b \mapsto a \qquad b \mapsto a \qquad b \mapsto a$

f is a Sturmian morphism if and only if $f \in St$.

- A Sturmian morphism f generates a Sturmian word iff $f \in St \setminus (\{Id, E\} \cup \{\varphi E, \tilde{\varphi}E\}^+ \cup \{E\varphi, E\tilde{\varphi}\}^+).$
- F. Mignosi, P. Séébold,
 Morphismes sturmiens et règles de Rauzy
 J. Théorie Nombres Bordeaux, 5 (1993), 221-233.

- A morphism *f* on *A* is *Sturmian* if *f*(*x*) is Sturmian whenever *x* is a Sturmian word.
- $St = \{E, \varphi, \tilde{\varphi}\}^*$ $E: a \mapsto b \qquad \varphi: a \mapsto ab \qquad \tilde{\varphi}: a \mapsto ba$ $b \mapsto a \qquad b \mapsto a \qquad b \mapsto a$
 - f is a Sturmian morphism if and only if $f \in St$.
- A Sturmian morphism f generates a Sturmian word iff $f \in St \setminus (\{Id, E\} \cup \{\varphi E, \tilde{\varphi}E\}^+ \cup \{E\varphi, E\tilde{\varphi}\}^+).$
- F. Mignosi, P. Séébold, Morphismes sturmiens et règles de Rauzy J. Théorie Nombres Bordeaux, 5 (1993), 221-233.

- A morphism *f* on *A* is *Sturmian* if *f*(*x*) is Sturmian whenever *x* is a Sturmian word.
- $St = \{E, \varphi, \tilde{\varphi}\}^*$ $E: a \mapsto b \qquad \varphi: a \mapsto ab \qquad \tilde{\varphi}: a \mapsto ba$ $b \mapsto a \qquad b \mapsto a \qquad b \mapsto a$

f is a Sturmian morphism if and only if $f \in St$.

A Sturmian morphism *f* generates a Sturmian word iff *f* ∈ St \ ({Id, E} ∪ {φE, φ̃E}⁺ ∪ {Eφ, Eφ̃}⁺).

F. Mignosi, P. Séébold,

Morphismes sturmiens et règles de Rauzy

J. Théorie Nombres Bordeaux, 5 (1993), 221-233.

Lothaire, Proposition 2.3.2

Let x be an infinite word over \mathcal{A} .

- (i) If E(x) is Sturmian then x is Sturmian.
- (ii) If $\varphi(x)$ is Sturmian then x is Sturmian.

(iii) If $\tilde{\varphi}(x)$ is Sturmian

- if x starts with the letter a then x is Sturmian.
- if x starts with the letter b then x = bx' with x' is Sturmian.

Lothaire, Proposition 2.3.2

Let x be an infinite word over \mathcal{A} .

- (i) If E(x) is Sturmian then x is Sturmian.
- (ii) If $\varphi(x)$ is Sturmian then x is Sturmian.

(iii) If $\tilde{\varphi}(x)$ is Sturmian

• if x starts with the letter a then x is Sturmian.

• if x starts with the letter b then x = bx' with x' is Sturmian.

Lothaire, Proposition 2.3.2

Let x be an infinite word over \mathcal{A} .

- (i) If E(x) is Sturmian then x is Sturmian.
- (ii) If $\varphi(x)$ is Sturmian then x is Sturmian.

(iii) If $\tilde{\varphi}(x)$ is Sturmian

• if x starts with the letter a then x is Sturmian.

• if x starts with the letter b then x = bx' with x' is Sturmian.

Lothaire, Proposition 2.3.2

Let x be an infinite word over \mathcal{A} .

- (i) If E(x) is Sturmian then x is Sturmian.
- (ii) If $\varphi(x)$ is Sturmian then x is Sturmian.

(iii) If $\tilde{\varphi}(x)$ is Sturmian

• if x starts with the letter a then x is Sturmian.

• if x starts with the letter b then x = bx' with x' is Sturmian.

Lothaire, Proposition 2.3.2

Let x be an infinite word over \mathcal{A} .

- (i) If E(x) is Sturmian then x is Sturmian.
- (ii) If $\varphi(x)$ is Sturmian then x is Sturmian.
- (iii) If $\tilde{\varphi}(x)$ is Sturmian
 - if x starts with the letter a then x is Sturmian.
 - if x starts with the letter b then x = bx' with x' is Sturmian.

Lothaire, Proposition 2.3.2

Let x be an infinite word over \mathcal{A} .

- (i) If E(x) is Sturmian then x is Sturmian.
- (ii) If $\varphi(x)$ is Sturmian then x is Sturmian.
- (iii) If $\tilde{\varphi}(x)$ is Sturmian
 - if x starts with the letter a then x is Sturmian.
 - if x starts with the letter b then x = bx' with x' is Sturmian.

 $F = \varphi^{\omega}(a) = \lim_{n \to \infty} \varphi^n(a) = abaababaabaabaabaabaaba$ F is Sturmian; aF and bF are Sturmian.

Property. For every infinite word x over \mathcal{A} , $a\tilde{\varphi}(x) = \varphi(x)$.

$$\rightarrow \tilde{\varphi}(bF) = a\tilde{\varphi}(F) = \varphi(F) = F. \rightarrow \tilde{\varphi}(bbF) = a\tilde{\varphi}(bF) = aF \text{ is Sturmia}$$

bbF is not Sturmian because *F* contains *aa* but *bbF* = *bx'* where x' = bF is Sturmian. (if $\tilde{\varphi}(x)$ is Sturmian and *x* starts with the letter *b* then x = bxwith *x'* is Sturmian)

 $F = \varphi^{\omega}(a) = \lim_{n \to \infty} \varphi^n(a) = abaabaabaabaabaabaaba$ F is Sturmian; aF and bF are Sturmian.

Property. For every infinite word x over A, $a\tilde{\varphi}(x) = \varphi(x)$.

$$\rightarrow \tilde{\varphi}(bF) = a\tilde{\varphi}(F) = \varphi(F) = F. \rightarrow \tilde{\varphi}(bbF) = a\tilde{\varphi}(bF) = aF \text{ is Sturmian}$$

bbF is not Sturmian because F contains aabut bbF = bx' where x' = bF is Sturmian. (if $\tilde{\varphi}(x)$ is Sturmian and x starts with the letter b then x = bx'with x' is Sturmian)

 $F = \varphi^{\omega}(a) = \lim_{n \to \infty} \varphi^n(a) = abaabaabaabaabaabaaba$ F is Sturmian; aF and bF are Sturmian.

Property. For every infinite word x over A, $a\tilde{\varphi}(x) = \varphi(x)$.

$$\rightarrow \tilde{\varphi}(bF) = a\tilde{\varphi}(F) = \varphi(F) = F. \rightarrow \tilde{\varphi}(bbF) = a\tilde{\varphi}(bF) = aF \text{ is Sturmia}$$

bbF is not Sturmian because *F* contains *aa* but *bbF* = *bx'* where x' = bF is Sturmian. (if $\tilde{\varphi}(x)$ is Sturmian and *x* starts with the letter *b* then x = bxwith *x'* is Sturmian)

 $F = \varphi^{\omega}(a) = \lim_{n \to \infty} \varphi^n(a) = abaababaabaabaabaabaaba$ F is Sturmian; aF and bF are Sturmian.

Property. For every infinite word x over A, $a\tilde{\varphi}(x) = \varphi(x)$.

bbF is not Sturmian because *F* contains *aa* but bbF = bx' where x' = bF is Sturmian. (if $\tilde{\varphi}(x)$ is Sturmian and *x* starts with the letter *b* then x = bx' with x' is Sturmian)

 $F = \varphi^{\omega}(a) = \lim_{n \to \infty} \varphi^n(a) = abaababaabaabaabaabaaba$ F is Sturmian; aF and bF are Sturmian.

Property. For every infinite word x over A, $a\tilde{\varphi}(x) = \varphi(x)$.

$$\rightarrow \tilde{\varphi}(bF) = a\tilde{\varphi}(F) = \varphi(F) = F. \rightarrow \tilde{\varphi}(bbF) = a\tilde{\varphi}(bF) = aF \text{ is Sturmian.}$$

bbF is not Sturmian because *F* contains *aa* but bbF = bx' where x' = bF is Sturmian. (if $\tilde{\varphi}(x)$ is Sturmian and *x* starts with the letter *b* then x = bx'with *x'* is Sturmian)

 $F = \varphi^{\omega}(a) = \lim_{n \to \infty} \varphi^n(a) = abaabaabaabaabaabaabaaba$ F is Sturmian; aF and bF are Sturmian.

Property. For every infinite word x over A, $a\tilde{\varphi}(x) = \varphi(x)$.

$$\rightarrow \tilde{\varphi}(bF) = a\tilde{\varphi}(F) = \varphi(F) = F. \rightarrow \tilde{\varphi}(bbF) = a\tilde{\varphi}(bF) = aF$$
is Sturmiar

bbF is not Sturmian because *F* contains *aa* but *bbF* = *bx'* where x' = bF is Sturmian. (if $\tilde{\varphi}(x)$ is Sturmian and *x* starts with the letter *b* then x = bx'with *x'* is Sturmian)

- 3 Morphisms giving Sturmian images
- Words whose image is Sturmian
- 5 Sturmian images by morphisms of fixed points of morphisms
- 6 A characterization
- 7 Standard morphisms
- 8 Conjugates of standard morphisms

Lothaire, Theorem 2.3.7

Let x be a Sturmian word and f a morphism on A. If f(x) is Sturmian then $f \in St$.

Proposition

Let x be an infinite word over A and f a morphism on A. If f(x) is Sturmian then $f \in St$.

Theorem 🛾

Let x be an infinite word over A and g a morphism on A such that x = g(x). If x is Sturmian then $g \in St$ and if, moreover, $g \neq Id_A$ then there exists $c \in A$ such that $x = g^{\omega}(c)$.

Lothaire, Theorem 2.3.7

Let x be a Sturmian word and f a morphism on A. If f(x) is Sturmian then $f \in St$.

Proposition

Let x be an infinite word over A and f a morphism on A. If f(x) is Sturmian then $f \in St$.

Theorem 🛾

Let x be an infinite word over A and g a morphism on A such that x = g(x). If x is Sturmian then $g \in St$ and if, moreover, $g \neq Id_A$ then there exists $c \in A$ such that $x = g^{\omega}(c)$.

Lothaire, Theorem 2.3.7

Let x be a Sturmian word and f a morphism on A. If f(x) is Sturmian then $f \in St$.

Proposition

Let x be an infinite word over A and f a morphism on A. If f(x) is Sturmian then $f \in St$.

Theorem 1

Let x be an infinite word over A and g a morphism on A such that x = g(x). If x is Sturmian then $g \in St$ and if, moreover, $g \neq Id_A$ then there exists $c \in A$ such that $x = g^{\omega}(c)$.

Sturmian fixed points of morphisms

Corollary

- If a Sturmian word x over $\mathcal A$ is a fixed point of some morphism $g \neq \mathit{Id}_\mathcal A$ then
 - x is generated by the D0L system G = (A, g, c) where g ∈ St is prolongable on the letter c ∈ A (x = g^ω(c));
 - $g \in St \setminus (\{Id, E\} \cup \{\varphi E, \tilde{\varphi}E\}^+ \cup \{E\varphi, E\tilde{\varphi}\}^+);$
 - there exists a morphism h ∈ St such that x is rigid of base h (each morphism of which x is a fixed point is a power of h).

Sturmian fixed points of morphisms

Corollary

- If a Sturmian word x over $\mathcal A$ is a fixed point of some morphism $g \neq \mathit{Id}_\mathcal A$ then
 - x is generated by the DOL system G = (A, g, c) where g ∈ St is prolongable on the letter c ∈ A (x = g^ω(c));
 - $g \in St \setminus (\{Id, E\} \cup \{\varphi E, \tilde{\varphi}E\}^+ \cup \{E\varphi, E\tilde{\varphi}\}^+);$
 - there exists a morphism h ∈ St such that x is rigid of base h (each morphism of which x is a fixed point is a power of h).

Sturmian fixed points of morphisms

Corollary

- If a Sturmian word x over $\mathcal A$ is a fixed point of some morphism $g \neq \mathit{Id}_\mathcal A$ then
 - x is generated by the DOL system G = (A, g, c) where g ∈ St is prolongable on the letter c ∈ A (x = g^ω(c));
 - $g \in St \setminus (\{Id, E\} \cup \{\varphi E, \tilde{\varphi}E\}^+ \cup \{E\varphi, E\tilde{\varphi}\}^+);$
 - there exists a morphism h ∈ St such that x is rigid of base h (each morphism of which x is a fixed point is a power of h).

- 2 Sturmian morphisms
- 3 Morphisms giving Sturmian images
- Words whose image is Sturmian
- 5 Sturmian images by morphisms of fixed points of morphisms
- 6 A characterization
- Standard morphisms
- 8 Conjugates of standard morphisms

Proposition

Let x be an infinite word over A. Are equivalent : $\exists f \text{ morphism on } A$ such that f(x) is Sturmian

 $\Leftrightarrow \quad \exists \ n \in \mathbb{N}, \ c \in \mathcal{A}, \ x' \text{ Sturmian word such that } x = c^n x'.$

B. Parvaix,

Contribution à l'étude des mots sturmiens

PhD thesis, (1998).

 $\forall n \in \mathbb{N}, n \geq 1, \exists x \text{ Sturmian word such that } a^2 \text{ is a factor of } x : \text{thus } b^2 x \text{ is not Sturmian but } (\tilde{\varphi}E)^n \tilde{\varphi}(b^{n+1}x) = a^{n+1} (\tilde{\varphi}E)^n \tilde{\varphi}(x) = (\varphi E)^n \varphi(x) \text{ is Sturmian for every } n \in \mathbb{N}.$

(For every infinite word x over A, $a\tilde{\varphi}(x) = \varphi(x)$)

Proposition

Let x be an infinite word over A. Are equivalent : $\exists f \text{ morphism on } A \text{ such that } f(x) \text{ is Sturmian}$ $\Leftrightarrow \exists n \in \mathbb{N}, c \in A, x' \text{ Sturmian word such that } x = c^n x'.$

B. Parvaix,

Contribution à l'étude des mots sturmiens PhD thesis, (1998).

 $\forall n \in \mathbb{N}, n \ge 1, \exists x \text{ Sturmian word such that } a^2 \text{ is a factor of } x : \text{thus } b^2x \text{ is not Sturmian but } (\tilde{\varphi}E)^n \tilde{\varphi}(b^{n+1}x) = a^{n+1} (\tilde{\varphi}E)^n \tilde{\varphi}(x) = (\varphi E)^n \varphi(x) \text{ is Sturmian for every } n \in \mathbb{N}.$

(For every infinite word x over A, $a\tilde{\varphi}(x) = \varphi(x)$)

- 2 Sturmian morphisms
- 3 Morphisms giving Sturmian images
- 4 Words whose image is Sturmian
- 5 Sturmian images by morphisms of fixed points of morphisms
- 6 A characterization
- Standard morphisms
- 8 Conjugates of standard morphisms

Theorem 2

Let y be a Sturmian word over A, and f, g morphisms on A, x infinite word over A such that y = f(x) and x = g(x):

- $f \in St$ and $g \in St$;
- exists $n \in \mathbb{N}$ and a Sturmian word x' such that $x = a^n x'$ or $x = b^n x'$;
- if $g \neq Id_A$ then x is Sturmian and x is generated by g.

St is left unitary : $f \in St$ and $fg \in St \Rightarrow g \in St$.

Theorem 2

Let y be a Sturmian word over A, and f, g morphisms on A, x infinite word over A such that y = f(x) and x = g(x):

- $f \in St$ and $g \in St$;
- exists $n \in \mathbb{N}$ and a Sturmian word x' such that $x = a^n x'$ or $x = b^n x'$;
- if $g \neq Id_A$ then x is Sturmian and x is generated by g.

St is left unitary : $f \in St$ and $fg \in St \Rightarrow g \in St$.

Corollary

If a Sturmian word y over \mathcal{A} is the image by a morphism f on \mathcal{A} of a fixed point of a morphism $g \neq Id_{\mathcal{A}}$ then y is generated by the HD0L system $H = (\mathcal{A}, g, f, c)$ where the morphisms f and g are Sturmian and $y = f(g^{\omega}(c))$ where $g^{\omega}(c)$ is the Sturmian word generated by the D0L system (\mathcal{A}, g, c) .

Proposition

The word $\tilde{\varphi}(F)$ fulfills the conditions of Theorem 2 but not those of Theorem 1 (with $g \neq Id_A$).

 $\tilde{\varphi}(F) = \tilde{\varphi}(\varphi^{\omega}(a))$ is generated by the HD0L system $(\mathcal{A}, \varphi, \tilde{\varphi}, a)$. $\tilde{\varphi}(F) = a^{-1}F$ is not generated by a morphism.

Corollary

If a Sturmian word y over \mathcal{A} is the image by a morphism f on \mathcal{A} of a fixed point of a morphism $g \neq Id_{\mathcal{A}}$ then y is generated by the HD0L system $H = (\mathcal{A}, g, f, c)$ where the morphisms f and g are Sturmian and $y = f(g^{\omega}(c))$ where $g^{\omega}(c)$ is the Sturmian word generated by the D0L system (\mathcal{A}, g, c) .

Proposition

The word $\tilde{\varphi}(F)$ fulfills the conditions of Theorem 2 but not those of Theorem 1 (with $g \neq Id_A$).

 $\tilde{\varphi}(F) = \tilde{\varphi}(\varphi^{\omega}(a))$ is generated by the HD0L system $(\mathcal{A}, \varphi, \tilde{\varphi}, a)$. $\tilde{\varphi}(F) = a^{-1}F$ is not generated by a morphism.

- 2 Sturmian morphisms
- 3 Morphisms giving Sturmian images
- Words whose image is Sturmian
- 5 Sturmian images by morphisms of fixed points of morphisms

6 A characterization

- 7 Standard morphisms
- 8 Conjugates of standard morphisms

For $c \in A$, let \overline{c} be such that $\{c, \overline{c}\} = A$. Let NS = $\{ x \text{ infinite word over } A \ / x = c^k \overline{c} x'$ with $c \in A, k \ge 1, \overline{c} x' \text{ non Sturmian } \}$.

Lemma

Let $x \in NS$ and $f \in St$. Then $f(x) \in NS$.

Let $S = \{$ Sturmian words over $\mathcal{A} \}$. Let $S_{c^n} = \{ c^n x, x \text{ Sturmian and } cx \text{ non Sturmian} \}$, $c \in \mathcal{A}$, $n \in \mathbb{N}$. Let $X = \{$ infinite words over $\mathcal{A} \}$.

 $X = S \cup NS \cup (\bigcup_{n \ge 1, c \in \mathcal{A}} S_{c^n})$ $S \cap NS = S \cap (\bigcup_{n \ge 1, c \in \mathcal{A}} S_{c^n}) = NS \cap (\bigcup_{n \ge 1, c \in \mathcal{A}} S_{c^n}) = \emptyset.$

For $c \in A$, let \overline{c} be such that $\{c, \overline{c}\} = A$. Let NS = $\{ x \text{ infinite word over } A \ / x = c^k \overline{c} x'$ with $c \in A, k \ge 1, \overline{c} x' \text{ non Sturmian } \}$.

Lemma

Let $x \in NS$ and $f \in St$. Then $f(x) \in NS$.

Let $S = \{$ Sturmian words over $\mathcal{A} \}$. Let $S_{c^n} = \{ c^n x, x \text{ Sturmian and } cx \text{ non Sturmian} \}, c \in \mathcal{A}, n \in \mathbb{N}.$ Let $X = \{ \text{infinite words over } \mathcal{A} \}.$

 $X = S \cup NS \cup (\bigcup_{n \ge 1, c \in \mathcal{A}} S_{c^n})$ $S \cap NS = S \cap (\bigcup_{n \ge 1, c \in \mathcal{A}} S_{c^n}) = NS \cap (\bigcup_{n \ge 1, c \in \mathcal{A}} S_{c^n}) = \emptyset.$

For $c \in A$, let \overline{c} be such that $\{c, \overline{c}\} = A$. Let NS = $\{ x \text{ infinite word over } A \ / x = c^k \overline{c} x'$ with $c \in A, k \ge 1, \overline{c} x' \text{ non Sturmian } \}$.

Lemma

Let $x \in NS$ and $f \in St$. Then $f(x) \in NS$.

Let $S = \{$ Sturmian words over $\mathcal{A} \}$. Let $S_{c^n} = \{c^n x, x \text{ Sturmian and } cx \text{ non Sturmian} \}$, $c \in \mathcal{A}$, $n \in \mathbb{N}$. Let $X = \{$ infinite words over $\mathcal{A} \}$.

$$X = S \cup NS \cup (\bigcup_{n \ge 1, c \in \mathcal{A}} S_{c^n})$$
$$S \cap NS = S \cap (\bigcup_{n \ge 1, c \in \mathcal{A}} S_{c^n}) = NS \cap (\bigcup_{n \ge 1, c \in \mathcal{A}} S_{c^n}) = \emptyset.$$

$$\begin{split} \mathsf{NS} &= \{ \begin{array}{l} \mathsf{x} \ \text{ infinite word over } \mathcal{A} \ / \ \mathsf{x} &= \mathsf{c}^k \bar{\mathsf{c}} \mathsf{x}' \\ \text{ with } \ \mathsf{c} &\in \mathcal{A}, k \geq 1, \bar{\mathsf{c}} \mathsf{x}' \ \text{non Sturmian } \}. \end{split}$$

 $S_{c^n} = \{c^n x, x \text{ Sturmian and } cx \text{ non Sturmian}\}, \ c \in \mathcal{A}, \ n \in \mathbb{N}.$

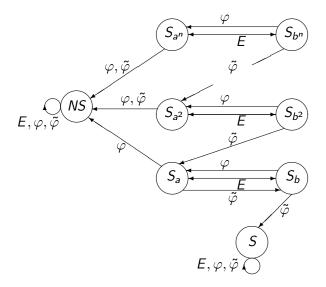
Lemma

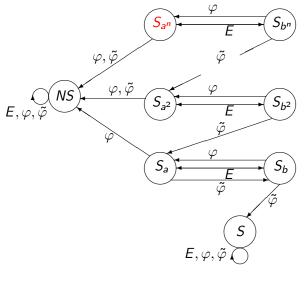
1 For every
$$f \in St$$
, $f(S) \subset S$ and $f(NS) \subset NS$.

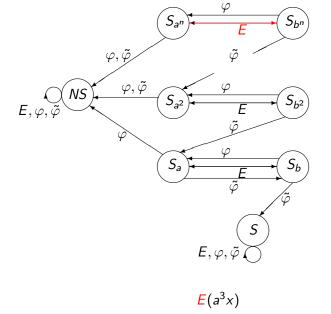
2 For every $n \in \mathbb{N}$ and $c \in \mathcal{A}$, $E(S_{c^n}) = S_{\overline{c}^n}$.

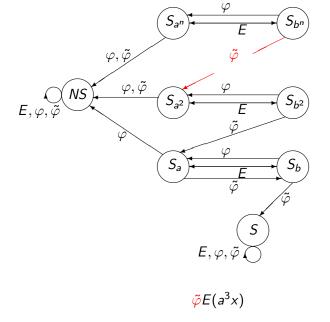
- $\textbf{ Sor every } n \in \mathbb{N} \setminus \{0\}, \ \varphi(S_{b^n}) \subset S_{a^n} \text{ and } \tilde{\varphi}(S_{b^n}) \subset S_{a^{n-1}}.$
- For every $n \in \mathbb{N} \setminus \{0\}$, $\varphi(S_{a^n}) \subset NS$.
- **6** For every $n \in \mathbb{N} \setminus \{0, 1\}$, $\tilde{\varphi}(S_{a^n}) \subset NS$.

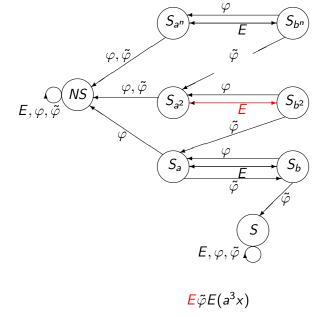
$$\circ \ \tilde{\varphi}(S_a) \subset S_b.$$



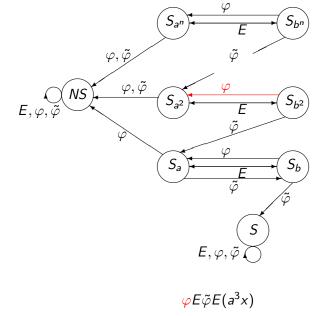




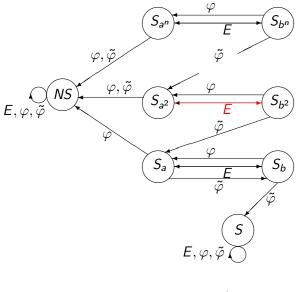




22/40

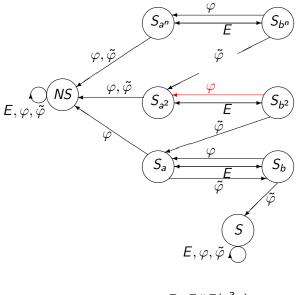


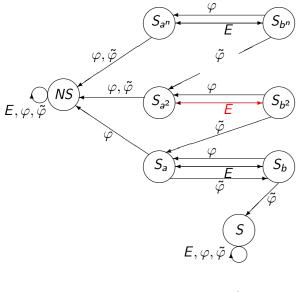
23/40



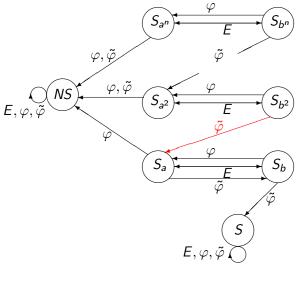
 $E\varphi E\tilde{\varphi}E(a^3x)$

24/40

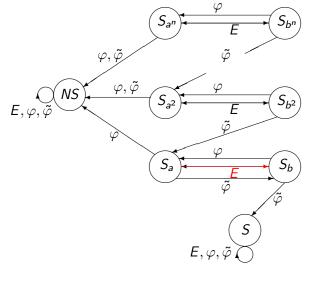




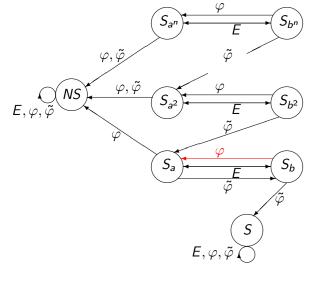
 $E\varphi E\varphi E\tilde{\varphi} E(a^3x)$



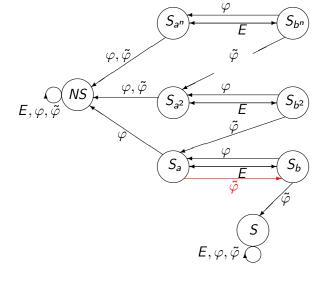
 $\tilde{\varphi}(E\varphi)^2 E\tilde{\varphi}E(a^3x)$



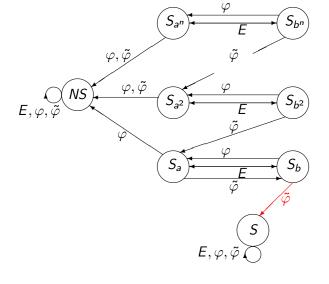
 $E\tilde{\varphi}(E\varphi)^2 E\tilde{\varphi}E(a^3x)$



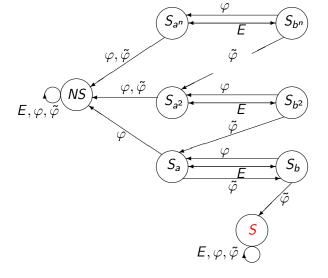
 $\varphi E\tilde{\varphi}(E\varphi)^2 E\tilde{\varphi}E(a^3x)$



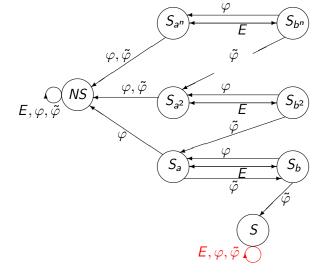
 $\tilde{\varphi}\varphi E\tilde{\varphi}(E\varphi)^2 E\tilde{\varphi}E(a^3x)$



 $\tilde{\varphi}\tilde{\varphi}\varphi E\tilde{\varphi}(E\varphi)^2 E\tilde{\varphi}E(a^3x)$



 $\tilde{\varphi}\tilde{\varphi}\varphi E\tilde{\varphi}(E\varphi)^2 E\tilde{\varphi}E(a^3x) = \varphi^2(\varphi E)^5(x)$



$(E,\varphi,\tilde{\varphi})^*\tilde{\varphi}\tilde{\varphi}\varphi E\tilde{\varphi}(E\varphi)^2 E\tilde{\varphi}E(a^3x) = (E,\varphi,\tilde{\varphi})^*\varphi^2(\varphi E)^5(x)$

Theorem 3

Let x be a Sturmian word and let f be a morphism on A.

- f(x) is Sturmian if and only if $f \in St$;
- if $b\mathbf{x}$ is not Sturmian, $f(b\mathbf{x})$ is Sturmian if and only if $f = f'\tilde{\varphi}$, $f' \in St$;
- if ax is not Sturmian, f(ax) is Sturmian if and only if f = f'g, $f' \in St$ and $g \in \tilde{\varphi}(E, \tilde{\varphi})$;
- if bx is not Sturmian, $f(b^n x)$ is Sturmian for some integer $n \ge 2$ if and only if f = f'g, $f' \in St$ and $g \in \tilde{\varphi}(E, \tilde{\varphi})(E\tilde{\varphi}, \varphi\tilde{\varphi}, \varphi E)^*\tilde{\varphi}[(E\varphi)^*E\tilde{\varphi}]^{n-2}(E\varphi)^*$;
- if ax is not Sturmian, $f(a^n x)$ is Sturmian for some integer $n \ge 2$ if and only if f = f'g, $f' \in St$ and $g \in \tilde{\varphi}(E, \tilde{\varphi})(E\tilde{\varphi}, \varphi\tilde{\varphi}, \varphi E)^*\tilde{\varphi}[(E\varphi)^*E\tilde{\varphi}]^{n-2}(E\varphi)^*E$.

Theorem 3

Let x be a Sturmian word and let f be a morphism on A.

- f(x) is Sturmian if and only if $f \in St$;
- if bx is not Sturmian, f(bx) is Sturmian if and only if $f = f' \tilde{\varphi}$, $f' \in St$;
- if ax is not Sturmian, f(ax) is Sturmian if and only if f = f'g, $f' \in St$ and $g \in \tilde{\varphi}(E, \tilde{\varphi})$;
- if bx is not Sturmian, $f(b^n x)$ is Sturmian for some integer $n \ge 2$ if and only if f = f'g, $f' \in St$ and $g \in \tilde{\varphi}(E, \tilde{\varphi})(E\tilde{\varphi}, \varphi\tilde{\varphi}, \varphi E)^*\tilde{\varphi}[(E\varphi)^*E\tilde{\varphi}]^{n-2}(E\varphi)^*$;
- if ax is not Sturmian, $f(a^n x)$ is Sturmian for some integer $n \ge 2$ if and only if f = f'g, $f' \in St$ and $g \in \tilde{\varphi}(E, \tilde{\varphi})(E\tilde{\varphi}, \varphi\tilde{\varphi}, \varphi E)^*\tilde{\varphi}[(E\varphi)^*E\tilde{\varphi}]^{n-2}(E\varphi)^*E$.

Theorem 3

Let x be a Sturmian word and let f be a morphism on A.

- f(x) is Sturmian if and only if $f \in St$;
- if *bx* is not Sturmian, f(bx) is Sturmian if and only if $f = f' \tilde{\varphi}$, $f' \in St$;
- if ax is not Sturmian, f(ax) is Sturmian if and only if f = f'g, $f' \in St$ and $g \in \tilde{\varphi}(E, \tilde{\varphi})$;
- if bx is not Sturmian, $f(b^n x)$ is Sturmian for some integer $n \ge 2$ if and only if f = f'g, $f' \in St$ and $g \in \tilde{\varphi}(E, \tilde{\varphi})(E\tilde{\varphi}, \varphi\tilde{\varphi}, \varphi E)^*\tilde{\varphi}[(E\varphi)^*E\tilde{\varphi}]^{n-2}(E\varphi)^*$;
- if ax is not Sturmian, f(aⁿx) is Sturmian for some integer n ≥ 2 if and only if f = f'g, f' ∈ St and g ∈ φ̃(E, φ̃)(Eφ̃, φφ̃, φE)*φ̃[(Eφ)*Eφ̃]ⁿ⁻² (Eφ)*E.

- 2 Sturmian morphisms
- 3 Morphisms giving Sturmian images
- Words whose image is Sturmian
- 5 Sturmian images by morphisms of fixed points of morphisms
- 6 A characterization
- Standard morphisms
- 8 Conjugates of standard morphisms

The writing of a morphism over $\{E, \varphi, \tilde{\varphi}\}$ is not unique.

Example : $\varphi^2 \tilde{\varphi} = \tilde{\varphi}^2 \varphi$

But $E^2 = Id$ and $\varphi(\varphi E)^k E \tilde{\varphi} = \tilde{\varphi}(\tilde{\varphi} E)^k E \varphi$, $k \in \mathbb{N}$, is a presentation of *St*.

 \Rightarrow If a writing of $f \in St$ contains at least one $\tilde{\varphi}$, then <u>all</u> the writings of f contain at least one $\tilde{\varphi}$.

The writing of a morphism over $\{E, \varphi, \tilde{\varphi}\}$ is not unique.

 $\mathsf{Example}: \varphi^2 \tilde{\varphi} = \tilde{\varphi}^2 \varphi$

But $E^2 = Id$ and $\varphi(\varphi E)^k E \tilde{\varphi} = \tilde{\varphi}(\tilde{\varphi} E)^k E \varphi$, $k \in \mathbb{N}$, is a presentation of *St*.

⇒ If a writing of $f \in St$ contains at least one $\tilde{\varphi}$, then <u>all</u> the writings of f contain at least one $\tilde{\varphi}$.

The writing of a morphism over $\{E, \varphi, \tilde{\varphi}\}$ is not unique.

$$\mathsf{Example}: \varphi^2 \tilde{\varphi} = \tilde{\varphi}^2 \varphi$$

But $E^2 = Id$ and $\varphi(\varphi E)^k E \tilde{\varphi} = \tilde{\varphi}(\tilde{\varphi} E)^k E \varphi$, $k \in \mathbb{N}$, is a presentation of St.

 \Rightarrow If a writing of $f \in St$ contains at least one $\tilde{\varphi}$, then <u>all</u> the writings of f contain at least one $\tilde{\varphi}$.

The writing of a morphism over $\{E, \varphi, \tilde{\varphi}\}$ is not unique.

$$\mathsf{Example}: \varphi^2 \tilde{\varphi} = \tilde{\varphi}^2 \varphi$$

But $E^2 = Id$ and $\varphi(\varphi E)^k E \tilde{\varphi} = \tilde{\varphi}(\tilde{\varphi} E)^k E \varphi$, $k \in \mathbb{N}$, is a presentation of St.

 \Rightarrow If a writing of $f \in St$ contains at least one $\tilde{\varphi}$, then <u>all</u> the writings of f contain at least one $\tilde{\varphi}$.

- 2 Sturmian morphisms
- 3 Morphisms giving Sturmian images
- Words whose image is Sturmian
- 5 Sturmian images by morphisms of fixed points of morphisms
- 6 A characterization
- Standard morphisms
- 8 Conjugates of standard morphisms

f morphism on \mathcal{A} such that f(a) and f(b) begin with the same letter $c \in \mathcal{A}$.

The *conjugate* of f is the morphism g defined by

 $g(x) = c^{-1}f(x)c$ for all $x \in A$.

If f is standard then it has |f(ab)| - 1 conjugates (including itself).

_emma

Let f be a Sturmian morphism. There exists a unique standard morphism g of which f is a conjugate and

•
$$f = f_1 f_2 \cdots f_n$$
, $f_i \in \{E, \varphi, \tilde{\varphi}\}$, $1 \le i \le n$;

•
$$g = g_1g_2\cdots g_n, f_i \in \{E,\varphi\}, 1 \le i \le n$$

• if $f_i = E$ or $f_i = \varphi$ then $g_i = f_i$; if $f_i = \tilde{\varphi}$ then $g_i = \varphi$.

P. Séébold, On the conjugaison of standard morphisms *Theoret. Comput. Sci.*, 195 (1998), 91-109. Patrice Séébold Sturmian images by morphisms

f morphism on \mathcal{A} such that f(a) and f(b) begin with the same letter $c \in \mathcal{A}$.

The *conjugate* of f is the morphism g defined by

 $g(x) = c^{-1}f(x)c$ for all $x \in A$.

If f is standard then it has |f(ab)| - 1 conjugates (including itself).

Lemma

Let f be a Sturmian morphism. There exists a unique standard morphism g of which f is a conjugate and

•
$$f = f_1 f_2 \cdots f_n$$
, $f_i \in \{E, \varphi, \tilde{\varphi}\}$, $1 \le i \le n$;

•
$$g = g_1 g_2 \cdots g_n, f_i \in \{E, \varphi\}, 1 \le i \le n;$$

• if
$$f_i = E$$
 or $f_i = \varphi$ then $g_i = f_i$; if $f_i = \tilde{\varphi}$ then $g_i = \varphi$.

Let $R: St \to St$, the transformation defined by R(E) = E, $R(\tilde{\varphi}) = R(\varphi) = \varphi$.

For any $f \in St$, R(f) is called the *standard representation* of f: R(f) is the standard morphism of which f is a conjugate.

Theorem 4

Let x be an infinite word over \mathcal{A} and $n \in \mathbb{N}$, $n \geq 2$. Let $g_1 \in \tilde{\varphi}(E, \tilde{\varphi})(E\tilde{\varphi}, \varphi\tilde{\varphi}, \varphi E)^*\tilde{\varphi}[(E\varphi)^*E\tilde{\varphi}]^{n-2}(E\varphi)^*$ and $g_2 \in \tilde{\varphi}(E, \tilde{\varphi})(E\tilde{\varphi}, \varphi\tilde{\varphi}, \varphi E)^*\tilde{\varphi}[(E\varphi)^*E\tilde{\varphi}]^{n-2}(E\varphi)^*E$. Then $g_1(b^n x) = [R(g_1)](x)$ and $g_2(a^n x) = [R(g_2)](x)$. Merci pour votre attention !