Lattices generated by Chip Firing Game: characterizations and recognition algorithm

PHAN Thi Ha Duong

Institute of Mathematics Vietnam Academy of Science and Technology

Journées SDA2 2017 : Systèmes Dynamiques, Automates and Algorithmes

Introduction to Chip Firing Game

Definition of Chip Firing Game History Research subjects on CFG

Lattice Structure of CFG

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Definition of Chip Firing Game History Research subjects on CFG

Chip firing games (CFG) on a graph: Definition

Given G = (V, E) directed multigraph. A model of chip firing games is described by

- (i) Configurations: each configuration is a distribution of chips on *V*.
- (ii) Firing rule: One vertex can fire if its chips is at least its out-degree. When it fires, it gives one chip to each of its neighbors.

Definition of Chip Firing Game History Research subjects on CFG

Small example of configuration space of CFG

Definition of Chip Firing Game History Research subjects on CFG

Example of configuration space of CFG

CFG on a graph of 7 vertices

Definition of Chip Firing Game History Research subjects on CFG

Origin of the Model

 Chip Firing Game is a discrete dynamical model defined by D. Dhar (1990) and by A. Björner, L. Lovász and W. Shor (1991).

Definition of Chip Firing Game History Research subjects on CFG

Origin of the Model

- Chip Firing Game is a discrete dynamical model defined by D. Dhar (1990) and by A. Björner, L. Lovász and W. Shor (1991).
- This model has applications in physics, computer science, social science and pure mathematics, etc.

Definition of Chip Firing Game History Research subjects on CFG

Origin of the Model

- Chip Firing Game is a discrete dynamical model defined by D. Dhar (1990) and by A. Björner, L. Lovász and W. Shor (1991).
- This model has applications in physics, computer science, social science and pure mathematics, etc.
- This model relates to combinatorial and algebraic objects such as lattice, matroid, spanning tree, group, etc.

Definition of Chip Firing Game History Research subjects on CFG

Chip firing games as model to study dynamical systems

- Vectorial space: Spencer (1983)
- Automata: Durand-Lose (1999) Masson and Formenti (2006)
- Economy: Dollar game: N. Biggs (1999);
- Discrete dynamical systems: Self-Organized Criticality: Bak, Tang and Weisenfeld(1987), Latapy, Morvan and P. (1998, 2004), Goles and Kiwi (1993), ...

Chip firing games as a tool to study structures of graphs, lattices, matroids

- Algebra: Sandpile group: Dhar et al. (1995), Biggs (1999), Cori, Le Borgne and Rossin (2000)
- Structures on graphs, Matroid: C. Merino (2001); S. Oh (2010).
- ► CFG and Rotor-router: Levine, Propp et al. (2007, 2008)
- ► CFG and random spanning trees: Baker and Shokrieh (2011)
- ► CFG and ULD lattices: Knauer and Felsner (2009 2011)

Definition of Chip Firing Game History Research subjects on CFG

Some Questions

- Under which condition, the game stops after a finite steps ?
- Does the game converge or not? (From an initial configuration, the game reaches a unique stable configuration?)
- In the case of convergent game, what is the behavior of all possible evolutions ?
- Is there any characterization or algorithm to detect the structure of such a space configuration ? (Yes: Lattice structure !)

Some Questions (2)

- In the case of convergent game, how one can know which is the stable configuration of a given initial configuration.
- Reachabality problem: given two configurations, how one can know if one is reachable from another.
- From one initial configuration, the system converges to a stable configurations. How one can say about the set of all stabe configurations ?
- Critical configurations: special stable configurations (which can be recurrent under some condition).
- ▶ What is the structure of the set of all critical configuration.
- How one can deduce properties of a graphs from its critical configurations.

Definition of Chip Firing Game History Research subjects on CFG

Two directions to study CFG

Vertically

- Fix an initial configuration, consider the set of all reachable configurations (the structure of configuration space).
- Study the order of this configuration space: theory of order, lattice, distributive lattice, etc.
- ► Find a characterization of class of lattices generated by CFG.
- Recognition algorithm of the class of lattices generated by CFG and related models.

Definition of Chip Firing Game History Research subjects on CFG

Two directions to study CFG (in this course)

Horizontally

- Consider the set of all critical configurations.
- Group structure of the set of critical configurations: the Sandpile group.
- Relation between critical configurations and clasical objects on graphs: spanning trees, Graphic Matroid ...
- Enumeration of critical configurations: Tutte polynomial.

Convergent properties

► **Theorem.** (Björner, Lovász and Shor, '91)

For a undirected connected graph with a sink, from an initial configuration, the game converges to a stable configuration.

Convergent properties

► **Theorem.** (Björner, Lovász and Shor, '91)

For a undirected connected graph with a sink, from an initial configuration, the game converges to a stable configuration.

▶ Theorem. (Björner and Lovász, '92; Latapy and P, '01)

For a directed connected graph without non trivial closed component, from an initial configuration, the game converges to a stable configuration.

Convergent properties

► **Theorem.** (Björner, Lovász and Shor, '91)

For a undirected connected graph with a sink, from an initial configuration, the game converges to a stable configuration.

▶ Theorem. (Björner and Lovász, '92; Latapy and P, '01)

For a directed connected graph without non trivial closed component, from an initial configuration, the game converges to a stable configuration.

► Theorem. (Holroyd et al., '08)

For a directed connected graph with a global sink, from an initial configuration, the game converges to a stable configuration.

Definition of Chip Firing Game History Research subjects on CFG

Order on configuration space of CFG

Order on CFG: configuration b is greater than configuration a if b can be obtained from a by applying a sequence of firings. Note: This is a well defined order due from the convergent properties of CFG.

 $\mathcal{L}(CFG)$: set of all CFG(G, O) with all graphs G and all initial configurations O.

Order on configuration space of CFG

- Order on CFG: configuration b is greater than configuration a if b can be obtained from a by applying a sequence of firings. Note: This is a well defined order due from the convergent properties of CFG.
- ► Configuration space CFG(G, O): the set of all reachable configurations from an initial one O.

 $\mathcal{L}(CFG)$: set of all CFG(G, O) with all graphs G and all initial configurations O.

Definition of Chip Firing Game History Research subjects on CFG

Examples of configuration space of CFG

A step of evolution

Definition of Chip Firing Game History Research subjects on CFG

Examples of configuration space of CFG

A step of evolution

Definition of Chip Firing Game History Research subjects on CFG

Examples of configuration space of CFG (2)

Changing initial configuration

<ロ><一><一><一><一><一><一><一><一</th>16/46

Definition of Chip Firing Game History Research subjects on CFG

Examples of configuration space of CFG (2)

Changing initial configuration

Generating lattice

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Order, Lattice, Distributive lattice, ULD

 A partial order is a binary relation which is reflexive, antisymetric and transitive.

Preliminary definitions Lattice structure of Chip Firing Game Some related models

- A partial order is a binary relation which is reflexive, antisymetric and transitive.
- In a partial order set, for two elements a and b, the infimum of a and b, inf(a, b) (if it exists) is the maximum element which is smaller than a and b. Duality for supremum of a and b: sup(a, b).

- ► A partial order is a binary relation which is reflexive, antisymetric and transitive.
- In a partial order set, for two elements a and b, the infimum of a and b, inf(a, b) (if it exists) is the maximum element which is smaller than a and b. Duality for supremum of a and b: sup(a, b).
- A lattice is a partial order such that for every couple a and b, the inf(a, b) and sup(a, b) exist.

- ► A partial order is a binary relation which is reflexive, antisymetric and transitive.
- In a partial order set, for two elements a and b, the infimum of a and b, inf(a, b) (if it exists) is the maximum element which is smaller than a and b. Duality for supremum of a and b: sup(a, b).
- A lattice is a partial order such that for every couple a and b, the inf(a, b) and sup(a, b) exist.
- A distributive (D) lattice is a lattice such that two operators inf and sup have distributive property.

- ► A partial order is a binary relation which is reflexive, antisymetric and transitive.
- In a partial order set, for two elements a and b, the infimum of a and b, inf(a, b) (if it exists) is the maximum element which is smaller than a and b. Duality for supremum of a and b: sup(a, b).
- ► A lattice is a partial order such that for every couple a and b, the inf(a, b) and sup(a, b) exist.
- A distributive (D) lattice is a lattice such that two operators inf and sup have distributive property.
- ► A upper locally distributive (ULD) lattice is lattice such that: for any element a and if b is the sup of all upper covers of a, then the interval [a, b] is a hypercube.

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Example of Distributive and ULD lattice

・ロ ・ ・ (型 ト ・ 注 ト ・ 注 ・ う へ ()
18 / 46

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Distributive lattices \subsetneq ULD laticces

Distributive lattices

- Domino and lozenge tilings of a plane region Rémila ('04)
- Planar spanning trees Gilmer and Litherland ('86)
- Eulerian orientations of a planar graph Felsner ('04)
- c-orientations of a graph Propp ('93)

Distributive lattices \subsetneq ULD laticces

Distributive lattices

- Domino and lozenge tilings of a plane region Rémila ('04)
- Planar spanning trees Gilmer and Litherland ('86)
- Eulerian orientations of a planar graph Felsner ('04)
- c-orientations of a graph Propp ('93)

Upper locally distributive lattices

- Subtrees of a tree Boulaye ('67)
- Convex subsets of a poset Birkhoff and Bennett ('85)
- Transitively oriented subgraphs of a transitively oriented digraph Björner ('85)
- Feasible multi-sets of an antimatroid with repitition Björner and Ziegler ('92)

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Lattice structure of Chip Firing Game

Theorem (Björner and Lovász '92, Latapy and P. '01) For a given graph G and an initial configuration O, the configuration space CFG(G, O) has a ULD lattice structure.

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Lattice structure of Chip Firing Game

- Theorem (Björner and Lovász '92, Latapy and P. '01) For a given graph G and an initial configuration O, the configuration space CFG(G, O) has a ULD lattice structure.
- Theorem (Magnien, P. and Vuillon '03)
 All distributive lattices can be genereted by CFG.

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Lattice structure of Chip Firing Game

- Theorem (Björner and Lovász '92, Latapy and P. '01) For a given graph G and an initial configuration O, the configuration space CFG(G, O) has a ULD lattice structure.
- Theorem (Magnien, P. and Vuillon '03)
 All distributive lattices can be genereted by CFG.
- ► Theorem (Magnien, P. and Vuillon '03)
 D ⊊ L(CFG) ⊊ ULD

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Example of a lattice of CFG which is not in D

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Example of a ULD lattice which is not a lattices of CFG

The smallest ULD lattice which is not a lattices of CFG
Preliminary definitions Lattice structure of Chip Firing Game Some related models

CFG lattice vs ULD lattice

 Problem 1: Find a lattice characterization of ULD's that can be generated by CFGs.

CFG lattice vs ULD lattice

- Problem 1: Find a lattice characterization of ULD's that can be generated by CFGs.
- Problem 2: Find a generalization of CFGs generating the whole class of ULDs.

CFG lattice vs ULD lattice

- Problem 1: Find a lattice characterization of ULD's that can be generated by CFGs.
- Problem 2: Find a generalization of CFGs generating the whole class of ULDs.
- Answer for Problem 2:

CFG lattice vs ULD lattice

- Problem 1: Find a lattice characterization of ULD's that can be generated by CFGs.
- Problem 2: Find a generalization of CFGs generating the whole class of ULDs.
- Answer for Problem 2:
- ► **Theorem.** (Magnien, P. and Vuillon '01)

The class of lattices generated by coloured CFG is exactly the class of ULD lattices.

CFG lattice vs ULD lattice

- Problem 1: Find a lattice characterization of ULD's that can be generated by CFGs.
- Problem 2: Find a generalization of CFGs generating the whole class of ULDs.
- Answer for Problem 2:
- ► **Theorem.** (Magnien, P. and Vuillon '01)

The class of lattices generated by coloured CFG is exactly the class of ULD lattices.

► Theorem. (Knauer '10)

Every ULD can be represented by a simple generilized CFG.

Characterization of ULD's that can be generated by CFGs.

Question: How to know if a given ULD lattice belongs to L(CFG) or not?

Characterization of ULD's that can be generated by CFGs.

- Question: How to know if a given ULD lattice belongs to L(CFG) or not?
- Our algorithm:
 - ▶ Input: A ULD lattice *L*.
 - Output: Is L in L(CFG) ? If Yes then construct a corresponding CFG to generate L.

イロト 不得下 イヨト イヨト 二日

24/46

Characterization of ULD's that can be generated by CFGs.

- Question: How to know if a given ULD lattice belongs to L(CFG) or not?
- Our algorithm:
 - ▶ Input: A ULD lattice *L*.
 - Output: Is L in L(CFG) ? If Yes then construct a corresponding CFG to generate L.
 - Find full characterizations for $\mathcal{L}(CFG)$.

Characterization of ULD's that can be generated by CFGs.

- Question: How to know if a given ULD lattice belongs to L(CFG) or not?
- Our algorithm:
 - ▶ Input: A ULD lattice *L*.
 - ► Output: Is L in L(CFG) ? If Yes then construct a corresponding CFG to generate L.
 - Find full characterizations for $\mathcal{L}(CFG)$.
 - Using CFG and related models, construct a filter from the class of distributive lattices to the class of ULD lattices.

Preliminary definitions Lattice structure of Chip Firing Game Some related models

CFG vs Simple CFG

- A simple CFG is a CFG on which each vertex is fired at most once.
- Two convergent CFG are equivalent if their lattices of configuration space are isomorphic.
- Theorem. (Magnien, P. and Vuillon '01) Any convergent CFG is equivalent to a simple CFG.

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Small example of CFG and ULD lattice with labeled cover relation

・ロ ・ ・ 日 ・ ・ 目 ・ 日 ・ 日 ・ の へ で
26 / 46

Coding each configuration of (simple) CFG by its set of firing vertices

- Let L be the lattice generated by a CFG(G, O):
- x of L coded by $V_x =$ firing vertices to obtained x from O.
- Cover $x \prec y$ (x obtained from y by firing v) is coded by v.

Meet irreducibles of D and ULD lattices

Definition

An element m in lattice L is called meet-irreducible if m has a unique upper cover.

Theorem. (Birkhoff '40)

A lattice is distributive if and only if it is isomorphic to the lattice of the ideals of the order induced by its meet-irreducibles.

Lemma (Caspard '98)

A lattice L is ULD if and only if for all $x, y \in L$,

$$x \prec y \leftrightarrow M_y \subset M_x$$
 and $|M_y \setminus M_x| = 1$.

(Here, $M_x = \{m \in M, m \ge x\}$).

(日) (同) (三) (三)

Coding each configuration of a ULD lattice a set of meet-irreducibles

- Let L be a ULD lattice, and M be its set of meet irreducibles.
- Each element x of L can be coded by $V_x = \{m \in M, m \not\geq x\}$.
- Each cover relation $x \prec y$ can be codes by $V_y \setminus V_x$.

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Coding by set of firing vertices and coding by set of meet-irreducibles

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Map from a CFG to a ULD lattice

Idea of the algorithm:

If CFG on G corresponds to a lattice L then V(G) corresponds to the set of meet-irreducibles of L.

Construction of a CFG from a distributive lattice

Let L be a lattice and M be its set of meet-irreducibles.

- The graph G = (V, E) is contructed as follow:
- $V = M \cup s$
- *E* is convering edges in the order *M*, plus:
 - $indeg_M(v) outdeg_M(v)$ edges from v to s (if it is positive)
 - one edge from v to s if v is isolated.
- ► The initial configuration is defined by: $c(v) = indeg_G(v) outdeg_G(v)$

Theorem. (Magnien, P. and Vuillon '01) CFG(G, 0) is isomorphic with L.

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Why a ULD can not be generated by a CFG ?

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Example

In $\mathcal{E}(c_6)$, w is the number of chips needed to add to c_6 for firing it; and e_{c_8} is the number of edges from c_8 to c_6 .

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Example

$$\mathcal{E}(c_6) = egin{cases} w \leq e_{c_8} \ w \leq e_{c_7} + e_{c_9} \ e_{c_9} < w \ \mathcal{E}(c_8) = \mathcal{E}(c_9) = \{w \geq 1\} \ \mathcal{E}(c_7) = egin{cases} w \leq e_{c_9} \ w \leq e_{c_6} + e_{c_8} \ e_{c_8} < w \ \end{pmatrix}$$

In $\mathcal{E}(c_6)$, w is the number of chips needed to add to c_6 for firing it; and e_{c_8} is the number of edges from c_8 to c_6 .

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Example

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Example

System of linear inequalities of firing process

- Let $L = (X, \leq)$ be a finite lattice. For each $m \in M$
 - \mathfrak{U}_m : minimal elements on which *m* can be applied.

System of linear inequalities of firing process

- Let $L = (X, \leq)$ be a finite lattice. For each $m \in M$
 - \mathfrak{U}_m : minimal elements on which *m* can be applied.
 - \mathfrak{L}_m : maximal elements on which *m* can not be applied.

System of linear inequalities of firing process

- Let $L = (X, \leq)$ be a finite lattice. For each $m \in M$
 - \mathfrak{U}_m : minimal elements on which *m* can be applied.
 - \mathfrak{L}_m : maximal elements on which *m* can not be applied.

▶
$$\mathfrak{U}_m = \{j^- : j \in J \text{ and } j \downarrow m\}$$
 (*J*: join irreducibles of *L*).
▶ $\mathfrak{L}_m =$ maximals of $\{X \setminus \bigcup_{a \in \mathfrak{U}_m} \{x \in L : a \leq x\}\}$

System of linear inequalities of firing process

- Let $L = (X, \leq)$ be a finite lattice. For each $m \in M$
 - \mathfrak{U}_m : minimal elements on which *m* can be applied.
 - \mathfrak{L}_m : maximal elements on which *m* can not be applied.
 - 𝔅 𝔅_m = {j⁻ : j ∈ J and j ↓ m} (J: join irreducibles of L).
 𝔅_m = maximals of {X \ U_{a∈𝔅m} {x ∈ L : a ≤ x}}

$$\blacktriangleright \mathcal{E}(m) = \{\sum_{x \in V_a} e_x < w : a \in \mathfrak{L}_m\}$$

$$\cup \{w \leq \sum_{x \in V_a} e_x : a \in \mathfrak{U}_m\} \cup \{w \geq 1\}$$

 $(e_x \text{ is the number of edges from } x \text{ to } m.)$

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Main theorem

Theorem.

 $L \in \mathcal{L}(CFG)$ if and only if for each meet- irreducible m, $\mathcal{E}(m)$ has non-negative solutions.

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Main theorem

Theorem.

 $L \in \mathcal{L}(CFG)$ if and only if for each meet- irreducible m, $\mathcal{E}(m)$ has non-negative solutions.

By using Karmarkar's algorithm, we can build an algorithm to run in time

$$O(|M|^{3.5} imes |J|^2 imes |L|^2 imes log(|L|)) imes log(log(|L|))$$

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Algorithm

 $\begin{array}{|c|c|c|c|c|} \hline \mathbf{Input} & : A \ ULD \ lattice \ L \ which \ is input \ as a \ acyclic \ graph \ with \ the \ edges \ defined \ by \ the \ cover \ relation \\ \hline \mathbf{Output: Yes if } \ L \ is \ in \ L(\ CFG), \ \mathbf{No} \ otherwise. \ If \ \mathbf{Yes} \ then \ give \ a \ support \ graph \ G \ and \ an \ initial \ configuration \ c_0 \\ on \ G \ so \ that \ CFG(G, \ c_0) \ is \ isomorphic \ to \ L \\ \hline V(G) & := \ M \cup \ \{s\}; \\ \hline E(G) & := \ \emptyset; \\ \hline \mathbf{for} \ m \in M \ \mathbf{do} \\ \hline Construct \ \mathcal{E}(m) \ ; \\ & \mathbf{if} \ \mathcal{E}(m) \ has \ no \ non-negative \ integral \ solutions \ \ \mathbf{then} \ \mathbf{Reject}; \\ & else \\ \hline else \\ \hline & else \\ \hline & else \\ \hline & else \ the \ collection \ of \ all \ variables \ in \ \mathcal{E}(m); \\ & Let \ U_m \ be \ the \ collection \ of \ all \ variables \ in \ \mathcal{E}(m); \\ & for \ e_s \in \ U_m \ \{w\} \ \ \mathbf{do} \\ & | \ \ \ Add \ f_m(e_x) \ edges \ (x, m) \ to \ G \\ & end \\ & Add \ f_m(w) \ + \ \sum_{e_x \in U_m \setminus \{w\}} \ f_m(e_x) \ edges \ (m, s) \ to \ G \\ \hline \end{array} \right.$

end

end

Construct the initial configuration c0 by

$$c_{0}(v) := \begin{cases} \deg^{+}(v) & \text{if } \deg^{-}(v) = 0\\ \deg^{+}(v) - f_{v}(w) & \text{if } \deg^{-}(v) \neq 0 \text{ and } v \neq s\\ 0 & \text{if } v = s \end{cases}$$

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Abelian Sandpile Model (ASM) and main result

 ASM is the CFG model which is restricted to undirected graphs

Abelian Sandpile Model (ASM) and main result

- ASM is the CFG model which is restricted to undirected graphs
- A vertex is chosen to be a sink (only receive chips, never fired during whole firing process)

Abelian Sandpile Model (ASM) and main result

- ASM is the CFG model which is restricted to undirected graphs
- A vertex is chosen to be a sink (only receive chips, never fired during whole firing process)

For each $m \in M$, replace each variable e_x in $\mathcal{E}(m)$ by $e_{x,m}$ and keep the linear inequalities, we obtain a new system $\mathcal{E}'(m)$

Abelian Sandpile Model (ASM) and main result

- ASM is the CFG model which is restricted to undirected graphs
- A vertex is chosen to be a sink (only receive chips, never fired during whole firing process)

For each $m \in M$, replace each variable e_x in $\mathcal{E}(m)$ by $e_{x,m}$ and keep the linear inequalities, we obtain a new system $\mathcal{E}'(m)$

Theorem.

 $L \in \mathcal{L}(ASM)$ if and only if $\{e_{m_1,m_2} = e_{m_2,m_1} | m_1, m_2 \in M\} \cup \bigcup_{m \in M} \mathcal{E}'(m)$ has non-negative solutions

Preliminary definitions Lattice structure of Chip Firing Game Some related models

First example of a lattice in $\mathcal{L}(CFG)$ but not in $\mathcal{L}(ASM)$

[Magnien '03]

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Smallest example of a lattice in $\mathcal{L}(CFG)$ but not in $\mathcal{L}(ASM)$

Preliminary definitions Lattice structure of Chip Firing Game Some related models

CFGs on DAGs and main theorem

Theorem.

Any CFG on an acyclic directed graph is equivalent to a ASM. Therefore $\mathcal{L}(ACFG) \subsetneq \mathcal{L}(ASM)$.
Introduction to Chip Firing Game Lattice Structure of CFG Preliminary definitions Lattice structure of Chip Firing Game Some related models

Inclusion on classes of lattices

$D \subsetneq \mathcal{L}(ACFG) \subsetneq \mathcal{L}(ASM) \subsetneq \mathcal{L}(CFG) \subsetneq ULD$

 Introduction to Chip Firing Game Lattice Structure of CFG Preliminary definitions Lattice structure of Chip Firing Game Some related models

Next problems

- ▶ What about *L*(*ECFG*)? (CFG on Eulerian graphs)
- A characterization of classes of graphs which are closed by simple CFGs
- ► Given a pair (G, L), is L generated by a CFG on G for some initial configuration?

Introduction to Chip Firing Game Lattice Structure of CFG Preliminary definitions Lattice structure of Chip Firing Game Some related models

Main references

	K. Meszaros Y. Peres J. Propp A. E. Holroyd, L. Levin and D. B. Wilson.
	Chip firing and rotor routing on directed graphs
	In and Out of Equilibrium II. Progress in Prophility (Pirkhauser 2009) 60
	in and Out of Equilibrium II. Frogress in Fropability (Birkhauser 2006), 60.
	A. Bjorner, L. Lovász, and W. Shor.
	Chip-firing games on graphes.
	E.J. Combinatorics, 12:283–291, 1991.
	Phan Thi Ha Duong and Tran Thi Thu Huong.
_	On the stability of sand niles model
	Theoret Compute Sci 411(3):504-601 2010
	medet: comput. 50., 41(5).554 601, 2010.
	E. Goles and M.A. Kiwi.
	Games on line graphes and sand piles.
	Theoret. Comput. Sci., 115:321–349, 1993.
	M. Latapy and H.D. Phan.
	The lattice structure of chin firing games
	Physica D 115:60-82 2001
	nysica D, 115.05-02, 2001.
	C. Magnien, H. D. Phan, and L. Vuillon.
	Characterisation of lattice induced by (extended) chip firing game.
	Discrete Math. Theoret. Comput. Sci., AA:229–244, 2001.
	Thi Ha Duong Phan.
	Two sided sand piles model and unimodal sequences
	117, 12(3).031-010, 2000.
	Trung Van Pham and Thi Ha Duong Phan
	nang van man and mi na buong man.

Lattices generated by chin firing game models, characterizations and recognition algorithm

45 / 46

э

Preliminary definitions Lattice structure of Chip Firing Game Some related models

Thank you for your attention!