Linear acceleration for 2D cellular automata

Anaël Grandjean, Victor Poupet, Gaétan Richard, Véronique Terrier
Jou*nées SDA2-5 Juillet 2017

1 Introduction

2 Linear speed-up for all neighborhoods

3 Linear speed-up with arbitrary input

4 Conclusion

I. Introduction

Cellunar Automata

Cellunder Automata

Cellundar Automata

$\square=0 \quad \square=1 \quad \square=2$

$\delta\left(\begin{array}{|l|l}\hline z & \\ \hline x & y \\ \hline\end{array}\right)=x+y+z \quad \bmod 3$

2-dimensional $\left(\mathbb{Z}^{2}\right)$

- finite set of states \mathcal{Q}
- neighborhood $\mathcal{V} \subseteq_{F} \mathbb{Z}^{2}$
- local transition function $\delta: \mathcal{Q}^{\mathcal{V}} \rightarrow \mathcal{Q}$

Cellunar Automata

$\square=0 \quad \square=1 \quad \square=2$

$\delta\left(\begin{array}{|l|l}\hline z & \\ \hline x & y \\ \hline\end{array}\right)=x+y+z \quad \bmod 3$
\rightarrow Global transition function

Lenguage recognition

a	b	a	b	b		a $\frac{1}{}$	
b	b	b	a	b		a b	
b	a	b	a	a		b b	
b	a	a	b	a		b b	

Consider two-dimensional languages over a finite alphabet Σ.

- Finite rectangular words.

Lenguage reccognition

$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$
$\#$	$\#$	$\#$						
$\#$	a	b	a	b	b	a	b	$\#$
$\#$	b	b	b	a	b	a	b	$\#$
\#	b	a	b	a	a	b	b	$\#$
\#	b	a	a	b	a	b	b	$\#$
\#	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$

Consider two-dimensional languages over a finite alphabet Σ.

- - Finite rectangular words.
- Quiescent state $\# \in \mathcal{Q} \backslash \Sigma$ as filler.

Language reccognition

Consider two-dimensional languages over a finite alphabet Σ.

- - Finite rectangular words.
- Quiescent state $\# \in \mathcal{Q} \backslash \Sigma$ as filler.
- Recognition at the origin cell.

About neighborhoods

About neighborhoods

About neighborhoods

About neighborhoods

About neighborhoods

About neighborhoods

$\mathcal{V}^{n+1}=\mathcal{V}^{n} \oplus \mathcal{V}$

- \mathcal{V} is complete iff $\bigcup_{k \in \mathbb{N}} \mathcal{V}^{k}=\mathbb{Z}^{2}$

$\mathrm{CH}(\mathcal{V})$: the smallest polygon of \mathbb{R}^{2} containing \mathcal{V}

About neighborhoods

$\mathcal{V}^{n+1}=\mathcal{V}^{n} \oplus \mathcal{V}$

- \mathcal{V} is complete iff $\bigcup_{k \in \mathbb{N}} \mathcal{V}^{k}=\mathbb{Z}^{2}$

$\mathrm{CH}(\mathcal{V})$: the smallest polygon of \mathbb{R}^{2} containing \mathcal{V}
- convex : $\mathcal{V}=\mathrm{CH}(\mathcal{V}) \bigcap \mathbb{Z}^{2}$

Real time

The real time $\left(\mathrm{RT} \mathrm{V}_{\mathcal{V}}\right)$ is the lowest t such that $\llbracket 0, n \rrbracket \times \llbracket 0, m \rrbracket \subset \mathcal{V}^{t}(0)$.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{RT})$ is the set of all languages recognizable in real time with \mathcal{V}.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{LT})=\bigcup_{n \in \mathbb{N}} \mathrm{CA}_{\mathcal{V}}(n \mathrm{RT})$ is the set of all languages recognizable in linear time with \mathcal{V}.

Realdtime

The real time $\left(R T_{\mathcal{V}}\right)$ is the lowest t such that $\llbracket 0, n \rrbracket \times \llbracket 0, m \rrbracket \subset \mathcal{V}^{t}(0)$.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{RT})$ is the set of all languages recognizable in real time with \mathcal{V}.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{LT})=\bigcup_{n \in \mathbb{N}} \mathrm{CA}_{\mathcal{V}}(n \mathrm{RT})$ is the set of all languages recognizable in linear time with \mathcal{V}.

Realdtime

The real time $\left(\mathrm{RT}_{\mathcal{V}}\right)$ is the lowest t such that $\llbracket 0, n \rrbracket \times \llbracket 0, m \rrbracket \subset \mathcal{V}^{t}(0)$.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{RT})$ is the set of all languages recognizable in real time with \mathcal{V}.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{LT})=\bigcup_{n \in \mathbb{N}} \mathrm{CA}_{\mathcal{V}}(n \mathrm{RT})$ is the set of all languages recognizable in linear time with \mathcal{V}.

Real time

The real time $\left(\mathrm{RT} \mathrm{V}_{\mathcal{V}}\right)$ is the lowest t such that $\llbracket 0, n \rrbracket \times \llbracket 0, m \rrbracket \subset \mathcal{V}^{t}(0)$.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{RT})$ is the set of all

- languages recognizable in real time with \mathcal{V}.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{LT})=\bigcup_{n \in \mathbb{N}} \mathrm{CA}_{\mathcal{V}}(n \mathrm{RT})$ is the set of all languages recognizable in linear time with \mathcal{V}.

Real time

The real time $\left(\mathrm{RT}_{\mathcal{V}}\right)$ is the lowest t such that $\llbracket 0, n \rrbracket \times \llbracket 0, m \rrbracket \subset \mathcal{V}^{t}(0)$.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{RT})$ is the set of all languages recognizable in real time with \mathcal{V}.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{LT})=\bigcup_{n \in \mathbb{N}} \mathrm{CA}_{\mathcal{V}}(n \mathrm{RT})$ is the set of all languages recognizable in linear time with \mathcal{V}.

Realdtime

The real time $\left(\mathrm{RT}_{\mathcal{V}}\right)$ is the lowest t such that $\llbracket 0, n \rrbracket \times \llbracket 0, m \rrbracket \subset \mathcal{V}^{t}(0)$.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{RT})$ is the set of all languages recognizable in real time with \mathcal{V}.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{LT})=\bigcup_{n \in \mathbb{N}} \mathrm{CA}_{\mathcal{V}}(n \mathrm{RT})$ is the set of all languages recognizable in linear time with \mathcal{V}.

Real time

The real time $\left(R T_{\mathcal{V}}\right)$ is the lowest t such that $\llbracket 0, n \rrbracket \times \llbracket 0, m \rrbracket \subset \mathcal{V}^{t}(0)$.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{RT})$ is the set of all languages recognizable in real time with \mathcal{V}.
$\mathrm{CA}_{\mathcal{V}}(\mathrm{LT})=\bigcup_{n \in \mathbb{N}} \mathrm{CA}_{\mathcal{V}}(n \mathrm{RT})$ is the set of all languages recognizable in linear time with \mathcal{V}.

II. Linear speed-up for all neighborhoods

г Theorem

$$
\mathrm{CA}_{\mathcal{V}}(\mathrm{RT}+f)=\mathrm{CA}_{\mathcal{V}}((1+\epsilon) \mathrm{RT}+\epsilon f)
$$

How to accelerate

$$
\frac{1 ㄴ ㅡ ㄴ ~}{\text { rr }}
$$

How to accelerate

Approximetion with rectangles

each $\mathcal{R}_{i} \subset \mathcal{V}$
\mathcal{V} can simulate each \mathcal{R}_{i}

- for each input at least one \mathcal{R}_{i} has a real time very close to \mathcal{V}

Approximetion with rectangles

each $\mathcal{R}_{i} \subset \mathcal{V}$
\mathcal{V} can simulate each \mathcal{R}_{i}

- for each input at least one \mathcal{R}_{i} has a real time very close to \mathcal{V}

Approximetion with rectangles

each $\mathcal{R}_{i} \subset \mathcal{V}$
\mathcal{V} can simulate each \mathcal{R}_{i}

- for each input at least one \mathcal{R}_{i} has a real time very close to \mathcal{V}

Approximetion with rectangles

each $\mathcal{R}_{i} \subset \mathcal{V}$
\mathcal{V} can simulate each \mathcal{R}_{i}

- for each input at least one \mathcal{R}_{i} has a real time very close to \mathcal{V}

Approximetion with rectangles

each $\mathcal{R}_{i} \subset \mathcal{V}$
\mathcal{V} can simulate each \mathcal{R}_{i}

- for each input at least one \mathcal{R}_{i} has a real time very close to \mathcal{V}

Approximetion with rectangles

each $\mathcal{R}_{i} \subset \mathcal{V}$

- \mathcal{V} can simulate each \mathcal{R}_{i}
- for each input at least one \mathcal{R}_{i} has a real time very close to \mathcal{V}

Approximetion with rectangles

each $\mathcal{R}_{i} \subset \mathcal{V}$
\mathcal{V} can simulate each \mathcal{R}_{i}

- for each input at least one \mathcal{R}_{i} has a real time very close to \mathcal{V}

Approximetion with rectangles

each $\mathcal{R}_{i} \subset \mathcal{V}$

- \mathcal{V} can simulate each \mathcal{R}_{i}
- for each input at least one \mathcal{R}_{i} has a real time very close to \mathcal{V}

Approximetion with rectangles

each $\mathcal{R}_{i} \subset \mathcal{V}$

- \mathcal{V} can simulate each \mathcal{R}_{i}
- for each input at least one \mathcal{R}_{i} has a real time very close to \mathcal{V}

Approximetion with rectangles

each $\mathcal{R}_{i} \subset \mathcal{V}$
\mathcal{V} can simulate each \mathcal{R}_{i}

- for each input at least one \mathcal{R}_{i} has a real time very close to \mathcal{V}

Approximetion with rectangles

each $\mathcal{R}_{i} \subset \mathcal{V}$
\mathcal{V} can simulate each \mathcal{R}_{i}

- for each input at least one \mathcal{R}_{i} has a real time very close to \mathcal{V}

III. Linear speed-up with arbitrary input

Language recognition

Consider two-dimensional
languages over a finite alphabet Σ.

Finite connex words.

Language reccognition

\#	\#	\#	\#	\#	\#	\#	\#	\#	\#	\#
\#	\#	\#	\#	\#	\#		\#	\#	\#	\#
\#	\#	\#	\#	\#				\#	\#	\#
\#	\#	\#	\#						\#	\#
\#	\#	\#							\#	\#
\#	\#								\#	\#
\#	\#								\#	\#
\#	\#								\#	\#
\#	\#								\#	\#
\#	\#	\#	\#						\#	\#
\#	\#	\#	\#	\#	\#	\#	\#	\#	\#	\#

Consider two-dimensional
languages over a finite alphabet Σ.

- - Finite connex words.
- Quiescent state $\# \in \mathcal{Q} \backslash \Sigma$ as filler.

Language reccognition

\#	\#	\#	\#	\#	\#	\#	\#	\#	\#	\#
\#	\#	\#	\#	\#	\#		\#	\#	\#	\#
\#	\#	\#	\#	\#				\#	\#	\#
\#	\#	\#	\#						\#	\#
\#	\#	\#							\#	\#
\#	\#								\#	\#
\#	\#								\#	\#
\#	\#								\#	\#
\#	\#								\#	\#
\#	\#	\#	\#						\#	\#
\#	\#	\#	\#	\#	\#	\#	\#	\#	\#	\#

Consider two-dimensional
languages over a finite alphabet Σ.

- - Finite connex words.
- Quiescent state $\# \in \mathcal{Q} \backslash \Sigma$ as filler.

Recognition at a given origin cell.

Compression

Compression

Choose a finite number of directions.

Compression

Choose a finite number of directions.

Compréssion

Choose a finite number of directions.

- Compress each cone on a different layer

Compression-of a cone

Compress only the cone.

Compression-of a cone

Compress only the cone.

Compression-of a cone

Compress only the cone.

All information goes into the same direction.

Compression-of a cone

Compress only the cone.

- All information goes into the same direction.

Origin sends signals to stop information.

Compression-of a cone

Compress only the cone.

- All information goes into the same direction.

Origin sends signals to stop information.

Compression-of a cone

Compress only the cone.

- All information goes into the same direction.

Origin sends signals to stop information.

Compression-of a cone

Compress only the cone.

- All information goes into the same direction.
- Origin sends signals to stop information.
- Correction is small.

IV. Conclusion
- This construction works in any dimensin.
- In this model, $\mathrm{CA}_{\mathcal{V}}(\mathrm{RT}) \neq \mathrm{CA}_{\mathcal{V}}((1+\epsilon) \mathrm{RT})$.
- Much work to do to define the model properly

