

Linear acceleration for 2D cellular automata

Anaël GRANDJEAN, Victor POUPET, Gaétan RICHARD, Véronique TERBIER

Journées SDA2 - 5 Juillet 2017

Table of Contents

1 Introduction

- 2 Linear speed-up for all neighborhoods
- 3 Linear speed-up with arbitrary input

4 Conclusion

I. Introduction

2 / 12

■ 2-dimensional (Z²)
 ■ finite set of states Q

2 / 12

$$\delta(\boxed{\begin{array}{c|c} z \\ \hline x & y \end{array}}) = x + y + z \mod 3$$

2-dimensional (Z²)
finite set of states Q
neighborhood V ⊆_F Z²
local transition function δ : Q^V → Q

2 / 12

$$\delta(\begin{array}{c|c} z \\ \hline x & y \end{array}) = x + y + z \mod 3$$

2-dimensional (Z²)
finite set of states Q
neighborhood V ⊆_F Z²
local transition function δ : Q^V → Q

 \rightarrow Global transition function

3 / 12

								_
	a	b	a	b	b	a	b	
	b	b	b	a	b	a	b	
	b	a	b	a	a	b	b	
	b	a	a	b	a	b	b	
_								<u> </u>

Consider two-dimensional languages over a finite alphabet Σ .

Finite rectangular words.

3 / 12

_										_
	#	#	#	#	#	#	#	#	#	
	#	a	b	a	b	b	a	b	#	
	#	b	b	b	a	b	a	b	#	
	#	b	a	b	a	a	b	b	#	
	#	b	a	a	b	a	b	b	#	
	#	#	#	#	#	#	#	#	#	

Consider two-dimensional languages over a finite alphabet Σ .

Finite rectangular words.

• Quiescent state $\# \in \mathcal{Q} \setminus \Sigma$ as filler.

3 / 12

_									
	#	#	#	#	#	#	#	#	#
	#	a	b	a	b	b	a	b	#
	#	b	b	b	a	b	a	b	#
	#	b	a	b	a	a	b	b	#
	#	b	a	a	b	a	b	b	#
	#	#	#	#	#	#	#	#	#

Consider two-dimensional languages over a finite alphabet Σ .

Finite rectangular words.

• Quiescent state $\# \in \mathcal{Q} \setminus \Sigma$ as filler.

Recognition at the origin cell.

4 / 12

• $\mathcal{V}^{n+1} = \mathcal{V}^n \oplus \mathcal{V}$ • \mathcal{V} is complete iff $\bigcup_{k \in \mathbb{N}} \mathcal{V}^k = \mathbb{Z}^2$

4 / 12

- $\mathcal{V}^{n+1} = \mathcal{V}^n \oplus \mathcal{V}$
- \mathcal{V} is complete iff $\bigcup_{k\in\mathbb{N}}\mathcal{V}^k=\mathbb{Z}^2$

• $\operatorname{CH}(\mathcal{V})$: the smallest polygon of \mathbb{R}^2 containing \mathcal{V}

4 / 12

• $\mathcal{V}^{n+1} = \mathcal{V}^n \oplus \mathcal{V}$

• \mathcal{V} is complete iff $\bigcup_{k\in\mathbb{N}}\mathcal{V}^k=\mathbb{Z}^2$

• $\operatorname{CH}(\mathcal{V})$: the smallest polygon of \mathbb{R}^2 containing \mathcal{V}

• convex : $\mathcal{V} = \operatorname{CH}(\mathcal{V}) \bigcap \mathbb{Z}^2$

The real time $(\mathrm{RT}_{\mathcal{V}})$ is the lowest t such that $\llbracket [0,n] \times \llbracket 0,m \rrbracket \subset \mathcal{V}^t(0).$

Real time

5 / 12

 $CA_{\mathcal{V}}(RT)$ is the set of all languages recognizable in real time with \mathcal{V} .

The real time $(RT_{\mathcal{V}})$ is the lowest t such that $\llbracket [0,n] \times \llbracket 0,m \rrbracket \subset \mathcal{V}^t(0).$

Real time

5 / 12

 $CA_{\mathcal{V}}(RT)$ is the set of all languages recognizable in real time with \mathcal{V} .

The real time $(\mathrm{RT}_{\mathcal{V}})$ is the lowest t such that $\llbracket [0,n] \times \llbracket 0,m \rrbracket \subset \mathcal{V}^t(0).$

Real time

5 / 12

 $CA_{\mathcal{V}}(RT)$ is the set of all languages recognizable in real time with \mathcal{V} .

The real time $(RT_{\mathcal{V}})$ is the lowest t such that $\llbracket [0,n] \times \llbracket 0,m \rrbracket \subset \mathcal{V}^t(0).$

Real time

5 / 12

 $CA_{\mathcal{V}}(RT)$ is the set of all languages recognizable in real time with \mathcal{V} .

The real time $(\mathrm{RT}_{\mathcal{V}})$ is the lowest t such that $\llbracket [0,n] \times \llbracket 0,m \rrbracket \subset \mathcal{V}^t(0).$

Real time

5 / 12

 $CA_{\mathcal{V}}(RT)$ is the set of all languages recognizable in real time with \mathcal{V} .

The real time $(\mathrm{RT}_{\mathcal{V}})$ is the lowest t such that $\llbracket [0,n] \times \llbracket 0,m \rrbracket \subset \mathcal{V}^t(0).$

Real time

5 / 12

 $CA_{\mathcal{V}}(RT)$ is the set of all languages recognizable in real time with \mathcal{V} .

The real time $(RT_{\mathcal{V}})$ is the lowest t such that $\llbracket [0,n] \times \llbracket 0,m \rrbracket \subset \mathcal{V}^t(0).$

Real time

5 / 12

 $CA_{\mathcal{V}}(RT)$ is the set of all languages recognizable in real time with \mathcal{V} .

II. Linear speed-up for all neighborhoods

Linear speed-up theorem

_ Theorem _____

$$CA_{\mathcal{V}}(RT+f) = CA_{\mathcal{V}}((1+\epsilon)RT+\epsilon f)$$

7 / 12

8 / 12

• each $\mathcal{R}_i \subset \mathcal{V}$

• \mathcal{V} can simulate each \mathcal{R}_i

8 / 12

• each $\mathcal{R}_i \subset \mathcal{V}$

• \mathcal{V} can simulate each \mathcal{R}_i

8 / 12

• each $\mathcal{R}_i \subset \mathcal{V}$

• \mathcal{V} can simulate each \mathcal{R}_i

8 / 12

• each $\mathcal{R}_i \subset \mathcal{V}$

• \mathcal{V} can simulate each \mathcal{R}_i

8 / 12

• each $\mathcal{R}_i \subset \mathcal{V}$

• \mathcal{V} can simulate each \mathcal{R}_i

8 / 12

• each $\mathcal{R}_i \subset \mathcal{V}$

• \mathcal{V} can simulate each \mathcal{R}_i

8 / 12

• each $\mathcal{R}_i \subset \mathcal{V}$

• \mathcal{V} can simulate each \mathcal{R}_i

8 / 12

• each $\mathcal{R}_i \subset \mathcal{V}$

• \mathcal{V} can simulate each \mathcal{R}_i

8 / 12

• each $\mathcal{R}_i \subset \mathcal{V}$

• \mathcal{V} can simulate each \mathcal{R}_i

8 / 12

• each $\mathcal{R}_i \subset \mathcal{V}$

• \mathcal{V} can simulate each \mathcal{R}_i

8 / 12

• each $\mathcal{R}_i \subset \mathcal{V}$

• \mathcal{V} can simulate each \mathcal{R}_i

III. Linear speed-up with arbitrary input

9 / 12

Consider two-dimensional languages over a finite alphabet Σ .

▶ Finite connex words.

9 / 12

Consider two-dimensional – languages over a finite alphabet Σ .

Finite connex words.

• Quiescent state $\# \in \mathcal{Q} \setminus \Sigma$ as filler.

9 / 12

Consider two-dimensional languages over a finite alphabet Σ .

Finite connex words.

- Quiescent state $\# \in \mathcal{Q} \setminus \Sigma$ as filler.
- Recognition at a given origin cell.

IV. Conclusion

Conclusion

• This construction works in any dimensin.

■ In this model, $CA_{\mathcal{V}}(RT) \neq CA_{\mathcal{V}}((1+\epsilon)RT)$.

Much work to do to define the model properly