A CLASS OF NON-RIGID INTERVAL EXCHANGES

S. Ferenczi, P. Hubert

INTERVAL EXCHANGES

A <u>k-interval exchange</u> or <u>k-iet</u> \mathcal{I} with probability vector $(\alpha_1, \alpha_2, \ldots, \alpha_k)$, and permutation π is defined by

$$\mathcal{I}x = x + \sum_{\pi^{-1}(j) < \pi^{-1}(i)} \alpha_j - \sum_{j < i} \alpha_j.$$

when \boldsymbol{x} is in the interval

$$\Delta_i = \left[\sum_{j < i} \alpha_j, \sum_{j \leq i} \alpha_j\right].$$

CLASSICAL RESULTS

<u>Almost all</u> iet = for fixed π , for Lebesgue-almost all probability vector in the simplex.

If π is primitive, almost all iet are <u>minimal</u> = all orbits are dense (Keane, 1975, with explicit condition called i.d.o.c.).

If π is primitive, allmost all iet are <u>uniquely ergodic</u> = only one invariant probability, Lebesgue (Veech/Masur, 1982).

If π is not circular, almost all iet are <u>weakly mixing</u> = no eigenvalues with measurable eigenvectors (Avila - Forni, 2007).

LESS CLASSICAL RESULTS

Are almost all iet simple? Question of Veech (1982), negative answer for k = 3 by Chaika - Eskin (2017).

Almost all iet are rigid = there exists a sequence $q_n \rightarrow \infty$ such that for any measurable set

 $\mu(T^{q_n}A\Delta A)\to \mathbf{0}.$

Examples of non-rigid iet were known only for 3 intervals. Until Robertson (2017) and F-H.

SQUARE TILED SURFACES

It is generated by d squares, whose sides are glued according to two permutations σ along the vertical and τ along the horizontal.

In this example $\tau(1, 2, 3) = (2, 1, 3)$ and $\sigma(1, 2, 3) = (3, 2, 1)$.

BUILDING AN IET

We take the <u>directional flow</u> of angle θ on a square tiled surface and its <u>first return map</u> on the union of negative diagonals. Let $\alpha = \frac{1}{1+\tan\theta}$.

SQUARE TILED INTERVAL EXCHANGES

let where the departure intervals are

 $[i, i + 1 - \alpha[$, denoted by i_l , sent to $[j + \alpha, j + 1[$, $j = \tau i$, $[i + 1 - \alpha, i + 1[$, denoted by i_r , sent to $[j, j + \alpha[$, $j = \sigma i$.

RIGIDITY

We take α irrational.

If the square-tiled surface is connected, equivalently no strict subset of $\{1 \dots d\}$ is invariant by σ and τ , the iet is minimal and uniquely ergodic.

Theorem 1. If the square-tiled surface is of genus at least 2 (equivalently $\sigma \tau \neq \tau \sigma$), the associated iet is rigid if and only if α has unbounded partial quotients; the linear flow in direction θ on X is rigid if and only if the slope $\tan \theta$ has unbounded partial quotients.

The nontrivial part is the proof of non-rigidity if BPQ.

SYMBOLIC SYSTEMS

For two words of equal length $w = w_1 \dots w_q$ and $w' = w'_1 \dots w'_q$, Hamming distance $= \overline{d}(w, w') = \frac{1}{q} \#\{i; w_i \neq w'_i\}.$

Symbolic system = the shift on infinite sequences on a finite alphabet.

For two words of equal length $w = w_1 \dots w_q$ and $w' = w'_1 \dots w'_q$, Hamming distance $= \overline{d}(w, w') = \frac{1}{q} \#\{i; w_i \neq w'_i\}.$

For a uniquely ergodic symbolic system, rigidity implies that for any infinite sequence $x_0x_1x_2...$ in the system, for a given ϵ , $n > n_0$, $N > n_1$, $\overline{d}(x_0...x_N, x_{q_n}...x_{q_n+N}) < \epsilon$.

\overline{d} - SEPARATION

 \underline{d} -separated = there exists C such that for any two words w and w' of length q produced by the system, if $\overline{d}(w, w') < C$, then $\{1, \ldots q\} = I \cup J \cup K$, intervals in increasing order, $w_J = w'_J$, $\overline{d}(w_I, w'_I) = \overline{d}(w_K, w'_K) = 1$ except for empty I or K.

 \overline{d} -separation was introduced by del Junco (1977) for the Thue - Morse sequence.

 \overline{d} -separation and aperiodicity imply non-rigidity (Lemanczyk - Mentzen, 1988).

NON - RIGIDITY OF SQUARE TILED IETS

Our iet is \overline{d} -separated if and only if $\sigma \tau i \neq \tau \sigma i$ for all i.

A sequence in the symbolic system gives a Sturmian sequence, $u \to \phi(u)$ by $i_l \to l$, $j_r \to r$ for all i, j.

If we have $\sigma \tau \neq \tau \sigma$, then there exists C such that for d pairs of words of length q, if

- $-\sum_{i=1}^d ar{d}(v_i,v_i') < C$,
- $\phi(v_i)$ is the same word u for all i,
- $\phi(v'_i)$ is the same word u' for all i,
- $v_i \neq v_j$ for $i \neq j$.

Then $\{1, \ldots, q\} = I \cup J \cup K$, intervals in increasing order

$$- v_{i,J} = v_{i,J}'$$
 for all i ,

$$-\sum_{i=1}^d ar{d}(v_{i,I},v_{i,I}') \geqslant 1$$
 if I is nonempty,

 $-\sum_{i=1}^{d} \overline{d}(v_{i,K}, v_{i,K}') \ge 1$ if K is nonempty,

This property contradicts rigidity.