A CLASS OF NON-RIGID INTERVAL EXCHANGES

S. Ferenczi, P. Hubert

INTERVAL EXCHANGES

 π is defined by

$$
\mathcal{I} x=x+\sum_{\pi^{-1}(j)<\pi^{-1}(i)} \alpha_{j}-\sum_{j<i} \alpha_{j} .
$$

when x is in the interval

$$
\Delta_{i}=\left[\sum_{j<i} \alpha_{j}, \sum_{j \leqslant i} \alpha_{j}[\right.
$$

CLASSICAL RESULTS

Almost all iet $=$ for fixed π, for Lebesgue-almost all probability vector in the simplex.

If π is primitive, almost all iet are minimal $=$ all orbits are dense (Keane, 1975, with explicit condition called i.d.o.c.).

If π is primitive, allmost all iet are uniquely ergodic $=$ only one invariant probability, Lebesgue (Veech/Masur, 1982).

If π is not circular, almost all iet are weakly mixing $=$ no eigenvalues with measurable eigenvectors (Avila - Forni, 2007).

LESS CLASSICAL RESULTS

Are almost all iet simple?
Question of Veech (1982), negative answer for $k=3$ by Chaika - Eskin (2017).

Almost all iet are rigid $=$ there exists a sequence $q_{n} \rightarrow \infty$ such that for any measurable set
$\mu\left(T^{q_{n}} A \Delta A\right) \rightarrow 0$.

Examples of non-rigid iet were known only for 3 intervals. Until Robertson (2017) and F-H.

SQUARE TILED SURFACES

It is generated by d squares, whose sides are glued according to two permutations σ along the vertical and τ along the horizontal.
In this example $\tau(1,2,3)=(2,1,3)$ and $\sigma(1,2,3)=(3,2,1)$.

BUILDING AN IET

We take the directional flow of angle θ on a square tiled surface and its first return map on the union of negative diagonals. Let $\alpha=\frac{1}{1+\tan \theta}$.

SQUARE TILED INTERVAL EXCHANGES

let where the departure intervals are
$\left[i, i+1-\alpha\left[\right.\right.$, denoted by i_{l}, sent to $[j+\alpha, j+1[, j=\tau i$,
$\left[i+1-\alpha, i+1\left[\right.\right.$, denoted by i_{r}, sent to $[j, j+\alpha[, j=\sigma i$.

RIGIDITY

We take α irrational.

If the square-tiled surface is connected, equivalently no strict subset of $\{1 \ldots d\}$ is invariant by σ and τ, the iet is minimal and uniquely ergodic.

Theorem 1. If the square-tiled surface is of genus at least 2 (equivalently $\sigma \tau \neq \tau \sigma$), the associated iet is rigid if and only if α has unbounded partial quotients; the linear flow in direction θ on X is rigid if and only if the slope $\tan \theta$ has unbounded partial quotients.

The nontrivial part is the proof of non-rigidity if BPQ.

SYMBOLIC SYSTEMS

For two words of equal length $w=w_{1} \ldots w_{q}$ and $w^{\prime}=w_{1}^{\prime} \ldots w_{q}^{\prime}$, Hamming distance $=$ $\bar{d}\left(w, w^{\prime}\right)=\frac{1}{q} \#\left\{i ; w_{i} \neq w_{i}^{\prime}\right\}$.

Symbolic system $=$ the shift on infinite sequences on a finite alphabet.
For two words of equal length $w=w_{1} \ldots w_{q}$ and $w^{\prime}=w_{1}^{\prime} \ldots w_{q}^{\prime}$, Hamming distance $=$ $\bar{d}\left(w, w^{\prime}\right)=\frac{1}{q} \#\left\{i ; w_{i} \neq w_{i}^{\prime}\right\}$.

For a uniquely ergodic symbolic system, rigidity implies that for any infinite sequence $x_{0} x_{1} x_{2} \ldots$ in the system, for a given $\epsilon, n>n_{0}, N>n_{1}$,
$\bar{d}\left(x_{0} \ldots x_{N}, x_{q_{n}} \ldots x_{q_{n}+N}\right)<\epsilon$.

\bar{d} - SEPARATION

\bar{d}-separated $=$ there exists C such that for any two words w and w^{\prime} of length q produced by the system, if $\bar{d}\left(w, w^{\prime}\right)<C$, then $\{1, \ldots q\}=I \cup J \cup K$, intervals in increasing order, $w_{J}=w_{J}^{\prime}, \bar{d}\left(w_{I}, w_{I}^{\prime}\right)=\bar{d}\left(w_{K}, w_{K}^{\prime}\right)=1$ except for empty I or K.
\bar{d}-separation was introduced by del Junco (1977) for the Thue - Morse sequence.
\bar{d}-separation and aperiodicity imply non-rigidity (Lemanczyk - Mentzen, 1988).

NON - RIGIDITY OF SQUARE TILED IETS

Our iet is \bar{d}-separated if and only if $\sigma \tau i \neq \tau \sigma i$ for all i.

A sequence in the symbolic system gives a Sturmian sequence, $u \rightarrow \phi(u)$ by $i_{l} \rightarrow l$, $j_{r} \rightarrow r$ for all i, j.

If we have $\sigma \tau \neq \tau \sigma$, then there exists C such that for d pairs of words of length q, if $-\sum_{i=1}^{d} \bar{d}\left(v_{i}, v_{i}^{\prime}\right)<C$,

- $\phi\left(v_{i}\right)$ is the same word u for all i,
- $\phi\left(v_{i}^{\prime}\right)$ is the same word u^{\prime} for all i,
- $v_{i} \neq v_{j}$ for $i \neq j$.

Then $\{1, \ldots q\}=I \cup J \cup K$, intervals in increasing order
$-v_{i, J}=v_{i, J}^{\prime}$ for all i,

- $\sum_{i=1}^{d} \bar{d}\left(v_{i, I}, v_{i, I}^{\prime}\right) \geqslant 1$ if I is nonempty,
- $\sum_{i=1}^{d} \bar{d}\left(v_{i, K}, v_{i, K}^{\prime}\right) \geqslant 1$ if K is nonempty,

This property contradicts rigidity.

